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ABSTRACT

Hyperspectral data consists of hundreds of contiguous ra-
diometric measurements collected passively from each pixel
inascene. Detection capitalizes on exploiting the difference
between target and background spectral signatures. Many
detection methods in hyperspectral processing employ sig-
nal models commonly used in radar even though it is an
active sensor. Starting from a common signal model, we
discuss adaptive detection algorithms for hyperspectral data
by outlining fundamental similarities and differences with
radar. We demonstrate detection using hyperspectral data
through experiments with real data and discuss the funda-
mental applicability of adaptive radar signal models to de-
tection in hyperspectral processing.

1. INTRODUCTION

The potential of hyperspectral sensors to perform target de-
tection has begun to emerge as data from current and pro-
jected sensors has shown that passive, spectral measure-
ments can distinguish targets from background. The ba-
sis for detection resides in exploiting the differences in re-
flective properties that occur in the hundreds of contiguous
spectral bands that comprise hyperspectral signals. Collec-
tively, these measurements constitute a vector signal that
may be used in detection algorithms designed to maximize
the separation between target and background signals.

For detection algorithms to be successful in operational
scenarios, they must employ accurate statistical descriptions
of both the target and background. Many of the algorithms
currently in use have been adapted from signal models used
for detection in radar systems. Consequently, despite the
significant differences in the physical mechanisms, a strong
parallelism can be drawn that maps the measured signals
from each sensor to a common signal model.
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2. MODELS FOR HYPERSPECTRAL SENSING
AND MTI RADAR

In order to understand the relationship between the signal
models for hyperspectral sensing and MTI radar, we first
explain the basic concepts behind both sensor models.

2.1. Hyperspectral Imaging

Hyperspectral sensors passively collect measurements of ra-

diation in hundreds of contiguous spectral bands. Collec-

tively, hyperspectral imaging (HSI) provides continuous cov-
erage of the electromagnetic spectrum over a wide range of

wavelengths. Incident radiation from the sun follows sev-

eral pathways as it reaches the sensor where it is measured

in terms of radiance (Watts/steradian/cm?/y:m). Mathemat-

ically, the radiance arriving at the sensor, Lgensor(A), can

be described as

Lsensor()‘) = Lsolar(/\)P(’\)T(/\) + Lpath.()\) aM

where Lgoq-(A) is the radiance spectrum entering the at-
mosphere at a designated time and location as a function of
wavelength. 7()) is the atmospheric transmittance, and pA
is the surface reflectance, and Ly, () is the additive path
radiance arising from interactions with the atmosphere.

In some cases, processing of the radiance arriving at the
sensor can yield useful results. However, in most cases, the
surface reflectance, p(X), is the quantity that is desired be-
cause it is an intrinsic property of the area being imaged and
is invariant to differences in atmospheric conditions during
observation. Reflectance is defined as the ratio of the in-
tensity arriving at the surface of an object to the intensity
reflected (0 < p(A) < 1), and the recovery of p()\) from
L(A) is accomplished through atmospheric compensation.
In this procedure, the surface reflectance for each pixel is
recovered by removing the effects of gaseous and water va-
por absorption in the atmosphere. Atmospheric compensa-
tion is derived from radiative transfer models and is by no
means an exact science. In addition to being computation-
ally demanding, the amount of error in the compensation is
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Fig. 1. 3-D datacubes for HSIL.

Fig. 2. 3-D CPI datacube for MTI radar.

difficult to quantify. Nevertheless, most hyperspectral pro-
cessing is performed "in reflectance.”

Hyperspectral sensors collect data along two spatial axes
derived from the motion of the sensor (along-track and across-

track) and another spectral axis. The resulting three-dimension

cube is depicted in Figure 1. The spatial resolution in HSI
is a consequence of several factors, but generally can be de-
termined from only two: instantaneous field of view (IFOV)
and altitude. IFOV is a parameter describing the optics that
conveys the angular expanse of one element on the focal
plane array that measures radiance. Multiplying the IFOV
by the altitude of the sensor gives the pixel size of the scene.

2.1.1. Linear Mixing Model

Hyperspectral processing attempts to exploit the wavelength-
dependent features of the reflectance spectrum measured
from a pixel. However, it is quite common for the sur-
face area occupying a pixel to be a combination of distinct
materials, or endmembers (e.g., water, trees, vehicle), each
possessing their own reflectance functions. The reflectance

function of a mixed pixel is some combination of the distinct
reflectance functions of each endmember. In general, accu-
rate physical modelling of the reflective properties of mix-
tures is not trivial, and is a function of numerous molecular
parameters, as well, as the proportions in which the end-
members appear. Several physically-derived models have
been proposed to model mixing under different conditions.

A common assumption for describing the mixing pro-
cess throughout hyperspectral processing that is analytically
tractable is that the reflectance spectrum of a mixed pixel is
a weighted linear combination of the individual endmember
reflectance functions, where the weights are the proportions
in which each endmember appears. Thus, the mathematical
model describing this recipe for a mixed pixel is

P
x=Sa+n=ZaiSi+n

i=1

)

Here, x is the reflectance spectrum of a mixed pixel, and S is
a matrix whose P columns are the reflectance spectra of the
endmembers, and ais a P x 1 vector of non-negative frac-
tional abundances. The additive noise vector, n, represents
the inaccuracies in the model. Two important constraints on
a must be imposed. The non-negativity constraint demands
that a; > 0,7 = 1,..., P, and to ensure the composition
of a mixed pixel is completely accounted for, the additivity
constraint requires Zf=1 a; = 1. Collectively, these con-
straints and the synthesis equation for mixed pixels in (2)
are referred to as the Linear Mixing Model (LMM).

2.2. MTI Radar

The objective of MTI radar systems is to detect the pres-
ence of moving objects. MTI radars on airborne platforms
illuminate a scene with a waveform and sample the return
at each element of a multi-element array (We restrict our
attention to uniform linear arrays (ULA).). The process is
repeated during a coherent processing interval (CPI). Af-
ter pulse compression, the data is organized into a three-
dimensional CPI datacube, as depicted in Figure 2, that is
indexed by 1) pulse number, 2) element number, and 3) sam-
ple number (range).

At each range value, a two-dimensional function locates
the presence of reflecting objects by their cone angle and
their corresponding Doppler frequency. For a fixed system,
the signal strength returned by a target depends upon its
range cross-section (RCS) value and its range. Stationary
objects will yield values along a "clutter ridge”, whereas
moving objects will lie off the ridge by an amount propor-
tional to its velocity relative to the platform. A moving tar-
get is most visible when its velocity is high (so as to move
it as far away as possible from the clutter ridge), and when
it returns a strong signal.
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By virtue of linearity, MTI radar observes a signal model
similar to the LMM in (2). The vector signal measured by
an antenna array is the linear superposition of reflections re-
ceived from all directions, and when a target is present, the
corresponding signal is given by

x=t+c+n 3)

Here, x is an M x 1 observation vector, where M is the
number of elements on the ULA, ¢ and n are clutter and
noise, respectively, and t is the target and is expressed as
t = av(e, f). a is the relative amplitude of the return
signal, and v is the steering vector which is related to the
geometry of the ULA as well as signal parameters. The
entries of v are given by:

_ eij[(m—l)p-éF+(n—1)%cos¢l

mn = C))
where m = 1, ..., M, is the element number, n = 1,..., N,
is the pulse number, ¢ is the azimuth angle, f is the Doppler
frequency, A is the wavelength, d is the array element spac-
ing, and PRF is the pulse repetition frequency. Resolution
in MTI radar systems is driven in the range direction by the
signal bandwidth of the interrogating signal and by the aper-
ture length in azimuth.

2.3. Relationships Between HSI and MTI Radar

We can see from (2) and (3) that signal models for HSI and
MTI radar are quite similar. Both sensors organize measure-
ments that occupy three axes (See Figures 1 and 2). Despite
the fact that HSI is passive and yields non-negative vector
measurements, and MTI radar is a form of active sensing
producing complex-values, the key to this equivalence is
the parallelism between endmembers and steering vectors
as well as RCS and fractional abundances.

In (4), v is a vector whose structure gives rise to the
complex-valued signal in x. When a target is in motion at
a specific range, its location in azimuth and Doppler fre-
quency decide the exact value of the steering vector. The
one-dimensional subspace defined by the target vector, t,
varies depending on the location and speed of the target. In
most instances, the resolution cell size is sufficiently small
that only one moving target resides in it. In the case, how-
ever, where multiple moving targets reside in a single cell,
the response from the cell will be the sum of weighted steer-
ing vectors, each having their own Doppler frequency. The
target response, t, can be extended to include P targets, so
that t = Ef;l a;v; = Va. Compared to (2), the steer-
ing vectors that are columns of V are analogous to the end-
members in S. Further, in (4), ¢ and n are comparable to
the background and additive noise in (2), and their statistics
are key factors in the detectors for each sensor type.

3. TARGET DETECTION

Based on the comparable signal models for HSI and MTI
radar discussed in Section 2, we can consider strategies for
detection in each. The LMM has been employed in numer-
ous circumstances to describe the mixing process. For the
purpose of target detection, it is capable of conveying the
mathematical relationship between the spectra of targets and
background. By virtue of the LMM, we assume that all pix-
els in a scene imaged by a hyperspectral sensor consist of at
least one endmember from the columns of S.

A specific type of target possesses a spectrum, but vari-
ability can arise due to many factors, including changes in
observation conditions. Depending on its source, variabil-
ity can be accounted for by adding endmembers (and cor-
responding abundances) to describe the same target under
different conditions, or by shaping the additive noise, n, in
the LMM to reflect statistical variability. S; denotes the
subset of columns in S describing targets, and S; denotes
background endmembers. Because the entries of S are non-
negative, S; and S, cannot be mutually orthogonal spaces,
and the subspaces they span necessarily overlap.

3.1. Types of Hyperspectral Detection

The task of detection can be posed for two separate cir-
cumstances that are of interest in hyperspectral processing
[1]. The Known Target detection problem occurs when the
presence of a specific target is to be detected amid back-
ground and noise, and S; is known. In contrast the Un-
known Target detection problem has no knowledge of a
target subspace, but attempts to detect any pixel that is dif-
ferent from the background. For this reason, detectors de-
signed for this goal are often called anomaly detectors.

The class of Known Target detection algorithms can be
further divided into two categories. The set of structured
background algorithms assumes that the subspace where
the background resides, S, is known so that the LMM in
(2) can be re-written as

X = Stag + Sbab +n (5)
Pr Pg+Pr

= Z a;s; + Z a;S; +n ©)
=1 i=Pr+1

where P = Pr + Pp. Note that the obstacles to perfect de-
tection, background and additive noise, have been modelled
as two distinct entities, Spa, and n. The resulting binary
detection test for structured background is

Hy: x = Spap +n @)
H1 : X = Stat + Sbab +n (8)

Alternatively, if the background endmembers are un-
known, the sources of interference cannot be separated into

75



separate background and noise terms. The unstructured
background problem lumps all non-target pixel contribu-
tions into a single vector, w, and the resulting binary detec-
tion test is written as:

H,: X=wW ©)
H,: x=S;a; +w (10)

The different pairs of hypotheses in (7-8) and (9-10) convey
varying levels of knowledge about the detection problem
and are critical to the formulation of optimal detectors.

When the size of a target is expected to be equal to or
greater in size than that of a pixel, i.e., the target is resolved,
the background is no longer present in either hypothesis.
This is a significant departure from radar detection models
which assume an additive target appears in addition to clut-
ter. A replacement target displaces some amount, or all,
of the environmental interference, or background. The fact
that the amount of background displaced by a target in a
mixed pixel can vary means that the statistics of the inter-
ference will also vary. As a consequence, the foremost chal-
lenge in the design of optimal, statistical detectors for sub-
pixel targets stems from the uncertainty of what fraction of
the pixel the target occupies.

3.2. MTI Detection

Like the techniques for hyperspectral detection, algorithms
in MTI radar find moving targets by exposing the Doppler
effect in signals measured by a ULA. Just as the subspaces
defined by target and background endmembers in HSI de-
tection provide the basis for separating target and background
pixels, the geometry of the array, along with the signal pa-
rameters, are combined by algorithms to maximize the vis-
ibility of moving targets.

Algorithms for detecting t in (3) optimally suppress the
presence of ¢ and n by means of Space-Time Adaptive Pro-
cessing (STAP) [2]. Resembling the detection model for a
known target in an unstructured background, the binary de-
tection model for a moving target, t, is given by

Ho: X=w (11)
H,: x=t+w, (12)

where w = ¢ + nin (3).

Moving targets may be present at any range and azimuth
position, and each pixel in the MTI radar datacube is a can-
didate for a detection test. For a specific 1ange value, the
cube of MTI data reduces to a single plane having M N
resolution cells. It is well known that the detector which
maximizes the SNR whitens the received signal based on
a filter derived from the covariance of the interference. A
covariance, R, having size M N x M N introduces signif-
icant complications, and, most often, a local covariance of a

smaller size is generated from a local neighborhood around
the cell being processed. Confining the covariance to a
neighborhood reduces the possibility of introducing non-
stationary behavior and results in a more precise estimate.

3.3. Relationship Between HSI and MTI Detection

As noted earlier, reflectance values in hyperspectral pro-
cessing are non-negative and no greater than one, and un-
like the intuition from radar, targets do not necessarily in-
duce signals of greater magnitude than background. Rather,
targets are discerned from background reflectance spectra
primarily by their shape, and detectors exploit the differ-
ences in spectral shapes represented by the endmembers to
separate targets from background.

3.4. Detectors

We have shown that the signal models for hyperspectral tar-
get detection in (7-8) and (9-10) and the signal model for the
detection of moving targets in (1112) are simialr. The key to
the parallelism lies in the similar roles played by endmem-
bers and steering vectors and the equivalence of abundances
and RCS values and is further driven by the assumption of
linearity when combining multiple signais.

By (11-11), detection in MTI radar compares range-angle
cells to a threshold to determine whether or not a target is
moving. Numerous detectors have been proposed to per-
form this comparison, each equipped to adaptively optimize
some aspect of the decision. Notably, the most desirable
features of detectors are: 1) CFAR (Constant False Alarm
Rate), 2) maximum SNR, and 3) speed of computation. A
detector might be able to assure one of these features, at the
expense of maintaining the others, and the trade-off of these
qualities is instrumental to an appropriate implementation.

The same set of circumstances also surrounds hyper-
spectral detection. A taxonomy of hyperspectral detectors
for both the known and unknown target case hyperspectral
data appears in [1], indicating the hierarchy of common de-
tectors. The Generalized Likelihood Ratio Test (GLRT) {3]
is a CFAR detector that utilizes the unstructured background
signal model, and for a single known target spectrum, s, the
GLRT for a test pixel spectrum, x, is given by:

S}Tﬁ_lx2 Hl
¢ Ry x) 2 mo. (13)

(sTﬁ;ls)(l + xTﬁ;lx) Hy

TeLrr(X) =

Other familiar detectors may be derived directly from the
GLRT under specific circumstances, such as the Adaptive
Matched Filter (AMF) [3] and the Adaptive Coherence Es-
timator (ACE) {4, 51. In the improbable case where the in-
terference covariance is the identity matrix, the ACE sim-
plifies to a simple cosine measure between s and x, often
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Fig. 3. Forest Radiance I scene.

referred to in the hyperspectral processing literature as the
Spectral Angle Mapper (SAM). It is defined as:
stx
Tsam(x) = —=——7=
) VsTsvxTx

With no incorporation of background statistics, clearly, SAM
cannot be CFAR or optimum in any sense.

(14)

4. HYPERSPECTRAL DETECTION RESULTS

Figure 3 displays thc RGB 1mage of the Forest Radiance I
scene imaged by the (Hy perspectral Digital Imagery Collec-
tion Experiment) HYDICE sensor. The data collection ac-
quired 210 bands of spectral data in spectral bins 3 — 11 nm
wide ranging from 399 - 2501 nm (Visible to Shortwave In-
frared). The scene consists of 1250 lines of data, each hav-
ing 320 samples with approximately 1 m x 1 m spatial reso-
lution. Three regions of distinct background type have been
demarcated. trees. grass. and muxed. In addition, a sepa-
rate region 1s outlined encompassing several vehicles of the
same type. from which pure target pixels are derived. Fig-
ure 4(a) illustrates the mean target spectrum obtained from
37 pure target pixels.

We demonstrate detection with hyperspectral data in two
different expeniments. The goal of the first experiment is to
demonstrate how sub-pixel targets are detected when they
appear mixed with background. The second experiment
considers the extreme case of the sub-pixel target problem
when the target is resolved and obscures all background
when it is present. For both experiments, the performance
of the SAM and GLRT detectors is compared side-by-side.

4.1. Sub-pixel Targets

Sub-pixel target spectra have been created synthetically by
adding the pure mean target spectrum from Figure 4(a) in
varying proportions to the 8232 pure tree spectra (back-
ground) in Figure 3. Although, there is no assurance that
spectra mix linearly in real mixed pixels, we have employed
this assumption for our investigation until accurate sub-pixel
target data and ground truth become available.

We have estimated the background covariance from the
homogeneous tree spectra. Both detectors yield values be-
tween O (background) and 1 (target), and pure background
detection statistic values have been generated from the 8232
tree pixels. An equal number of target mixtures resulted by
combining the same background pixels with the mean target
vehicle spectrum in 25%/75%, 50%/50%, and 75%/25%
target/background proportions. The range of detection statis-
tic values for the SAM detector appears in Figure 4(b) and
for the GLRT in Figure 4(c).

In Figures 4(b) and 4(c), the regions of dark blue cor-
respond to the range of statistic values induced by the tree
pixels. The regions of red correspond to the range of tar-
get mixture statistic values. Intervals of light blue, if any,
correspond to regions where test statistics from pure back-
ground pixels and sub-pixel targets overlap and indicate pix-
els where false alarms and missed detections could occur. A
white strip appears at the value of the mean target/background
statistic. Regions of yellow indicate the amount of separa-
tion, if any, between target and background. The greater the
width of the yellow region, the better the detector is capable
of separating sub-pixel targets from pure background.

4.2. Resolved Targets

The 37 target pixels in Figure 3 are fully resolved, and they
completely obscure any background. In spite of the fact that
there is no background to whiten when the target is present,
and using the 37 target pixels and the 8232 background pix-
els, we assessed the performance of the SAM and GLRT de-
tectors in separating pure target and pure background spec-
tra. In Figure 4(d), both the SAM and GLRT detection re-
sults for resolved targets are depicted side-by-side.

4.3. Discussion

In Figure 4(b) the SAM detector is unable to successfully
separate every sub-pixel target until 75% of the pixel is oc-
cupied by the target. This is not surprising since SAM does
nothing to suppress the background. On the other hand,
in Figure 4(c), the GLRT has a relatively large pure back-
ground and target/background separation even when the tar-
get occupies only 25% of the pixel. This is due to the sup-
pression of the background through whitening by the in-
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Fig. 4. (a) Mean target spectrum; (b) Sub-pixel detec-
tion statistics for SAM; (c) Sub-pixel detection statis-
tics for GLRT; (d) Resolved target detection results for
SAM and GLRT.

verse covariance, R;l in (13). For resolved targets, Fig-
ure 4(d) confirms that the effect of whitening significantly
improves the separability of target and background.

In both experiments, the same estimated covariance was
used regardless of the percentage of background present.
For this target and background, the results in Figure 4 show
that, even when the background covariance is mismatched
to the amount of background present, the performance still
exceeds that of the SAM detector. Proper cancellation of
background for hyperspectral detection is a function of the
percentage of background present as well as the relationship
between the target and background subspaces. Based on the
LMM, this relationship will be key for

5. CONCLUSION

We have demonstrated in this paper that, under the assump-
tion of linear mixing, detection in hyperspectral processing
bears significant similarities with detection in MTI radar.
The key to this parallelism is the analogous relationship be-
tween endmembers and steering vectors as well as abun-
dances and RCS values. Our detection results indicate that
statistical detectors for radar can be adapted to hyperspectral
signals for both the sub-pixel and resolved target problem.
even though sub-pixel targets give rise to replacement target
models. Moreover, future work will continue to investigate
methods for translating the optimalities of radar detection to
the hyperspectral domain.
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